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ABSTRACT
This paper presents a constraint management methodology,

which facilitates tradeoff studies during conceptual design.
This approach represents design models as constraints between
variables, and uses the resulting constraint network to auto-
matically derive computational procedures for performing user-
specified tradeoff studies.  By decomposing large constraint
networks into smaller pieces that can be solved robustly, this
approach can solve extremely large systems of non-linear
equations present in practical system models.  Design Sheet is a
software implementation of this methodology; it allows the
designer to interactively develop models, flexibly define trade-
off studies, and quickly explore large areas of design space to
study how the different performance and cost criteria tradeoff
with respect to one another.  Design Sheet has been used on
practical applications ranging from the system-level design of
spacecraft using combined performance and cost models to the
preliminary design of automotive bearings.  This paper demon-
strates the unique capabilities of Design Sheet in performing
design tradeoff studies, using a thermal imaging system
performance model developed for the DARPA MADE program.

INTRODUCTION
The design of complex systems requires assessing a wide

range of alternative designs, so as to determine one that best
meets competing requirements from multiple perspectives, such
as performance, manufacturability, reliability and cost.  As
detailed evaluation of large numbers of design alternatives is
not practical because of resource constraints, a hierarchical
approach is used in deciding the design specifications.  During
the early conceptual phases of this process, decisions are made
about which configurations are better than which others.
During the detailed phases, when the major configuration

options and design choices have already been made, the task is
to determine the optimal values for all the detailed design
parameters.  In current industry practice, detailed simulation
models and optimization algorithms are widely used for this
purpose.  Though design decisions made during the early stages
have a far greater impact on the final design quality and cost,
few decision support tools are available for conceptual design.

During conceptual design, large areas of the design space
are explored and candidate designs evaluated with respect to
multiple criteria.  Which tradeoffs are important at any stage
during design, however, are not known a priori and depend on
the results of other tradeoff analyses.  Additionally, as cost is
often a crucial criterion in system design, multiple attribute
tradeoffs with combined performance and cost models are
essential.  Furthermore, models used for conceptual design
tradeoff analyses are often based on incomplete and quickly
evolving system descriptions.  Therefore, the critical capa-
bilities for a conceptual design system are flexibility in defining
and performing tradeoff studies, ease of integrating models
from multiple perspectives, and support for quick development
and incremental modification of models.

Several research efforts are aimed at developing collabora-
tive design environments that integrate multiple models and
tools used by engineers (e.g., Herman and Lu, 1992; Cutkosky,
1993; McGuire et al., 1993; Sriram and Logcher, 1993).  How-
ever, these environments are only appropriate for the detailed
stages of design.  Conceptual design research, on the other
hand, has mainly focused on the role of optimization and robust
design (e.g., Choy and Agogino, 1992; Dixon, Orelup and
Welch, 1993), without any emphasis on how to use integrated
models.  Currently, conceptual design decisions are often made
without recourse to integrated models.  In some cases, spread-
sheets and specialized FORTRAN programs are used, but these
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tools are not flexible because the knowledge of what tradeoff
studies are needed is hard-coded into them and it is difficult to
change or refine these models after they are first created.

In order to overcome the difficulties discussed above, a
conceptual design methodology should use a declarative
representation for design models.  Algebraic equations are typi-
cally the natural representation for conceptual design analysis
knowledge.  Such a representation separates the models from
the mechanisms that control their use, thus making it easy to
develop models incrementally and integrate them easily with
other models.  Using declarative knowledge for tradeoff analy-
sis requires the solution of systems of non-linear equations.  A
flexible and rapid tradeoff study capability further requires a
method to automatically produce control code from simple
specifications. Constraint management techniques provide a
powerful mechanism for accomplishing these tasks.  They
represent the equations as constraints between variables, and
propagate the changes in variable values across the constraint
network.  In doing this, they generate computational plans
necessary for solving the systems of equations as well as
performing tradeoff analysis.

The robustness of numerical methods for solving systems
of non-linear equations deteriorates rapidly with the number of
equations that need to be solved simultaneously.  The main
strength of constraint management approaches is in decompos-
ing large systems of equations into subsets of more manageable
size, which can be solved individually before being combined to
obtain the overall solution.  Constraint management approaches
have, therefore, been used by several researchers in creating
design systems.  Bouchard, et al. (1988) use directed constraints
between design variables and numerical solution approaches for
rapid production of trade-off studies.  This approach, however,
forces the designer to decide a priori which variables are input
and which are output.  Serrano (1987) has developed a con-
straint management approach based on bipartite matching for
efficiently decomposing large systems of algebraic equations,
and strong component identification for determining subsets of
equations that need to be solved simultaneously.  Ramaswamy
and Ulrich (1993) have extended this work by developing a
spreadsheet interface to the constraint system.  Fromont and
Sriram (1992) use planning techniques to add flexibility to such
systems, such as allowing constraints to be added incrementally.
Ward (1989) has extended constraint management for propagat-
ing interval values.  However, this is only practical for linear
systems.

In these approaches, the simultaneous subsets of equations
are solved either symbolically or numerically, without further
decomposition.  In practical applications, where such subsets
can include several tens of simultaneous nonlinear equations,
robust solution techniques are not available.  Krishnan, et al.
(1990) discuss issues in user-directed constraints as well as
suggestions for further decomposing strong components
representing the equations that need to be solved simul-
taneously.  However, their treatment is not comprehensive in
either aspect.

We have developed a constraint management methodology
and implemented a prototype system, called Design Sheet, for
conceptual design tradeoff studies.  It uses a graph-theoretic
decomposition process, which not only identifies subsets of
equations that need to be solved simultaneously, but further
decomposes such subsets to improve the robustness of the
overall solution procedure.  This is one of the main reasons why
Design Sheet scales up for solving practical analysis problems,
which require from a few hundreds to a few thousands of equa-
tions to be solved.  The system interface is designed to allow
the user to easily develop the model, modify the independent
variables, change variables values, and specify tradeoff studies.

DESIGN SHEET – A CONCEPTUAL DESIGN SYSTEM
FOR TRADEOFF STUDIES

Design Sheet is a conceptual design system for facilitating
tradeoff studies.  It integrates constraint management tech-
niques, symbolic mathematics and robust equation solving
capabilities with a flexible environment for developing models
and specifying tradeoff studies.  It uses principally algebraic
equations to represent a model1, from which it automatically
derives computational procedures required for solving systems
of non-linear equations based on user-specified tradeoff studies.

Design Sheet Methodology
In order to effectively deal with large systems of algebraic

equations, Design Sheet decomposes the systems into smaller,
more manageable parts.  As an example, consider the system of
equations shown in Figure 1.  Also, suppose that the variable g
is an independent variable, whose value is specified by the user.
Even though this is a relatively small system of equations,
solving this system simultaneously for all 6 variables is quite
hard and may not be fruitful.  This is because non-linear equa-
tion solving methods have increasingly poor convergence prop-
erties as the number of equations and variables grows.

A better solution strategy can be found by rearranging the
equations.  Figure 2 shows the rearranged equations in the form
of a matrix, with equations and variables corresponding to rows
and columns, respectively.  A box in the matrix is colored if the
variable in that column is present in the equation for that row.
From the matrix, we can see that it is possible to first solve

                                                          
1 Besides simple algebraic expressions, Design Sheet allows interpolation and

look-up tables, conditional expressions and external functions and
subroutines in Lisp or FORTRAN.

1. a2 + log(c) = d

2. d sin(f) + g = 0

3. a - c = e2

4. b = e + f

5. d2 + 5dg = 6

6. ac = e - f

Figure 1. A system of non-linear equations.
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equation 5 for d, then equation 2 for f. Once we have the values
for d and f, equations 1, 3, and 6 can be solved simultaneously
for a, c, and e. Finally, given the values of e, f, and g, equation 4
can be solved for b.  The computational plan for solving the
entire system is shown in Figure 3.  Essentially, this decompo-
sition has simplified the problem of solving a 6x6 system of
equations down to a problem of solving a 3x3 system and three
problems of solving a 1x1 system.

In order to do this kind of decomposition, Design Sheet
represents equations and variables in a bipartite graph, and
makes use of several graph search algorithms to direct, group
and reduce the graph.  The bipartite graph is made up of two
kinds of nodes, an equation node for each equation and a
variable node for each variable.  Edges in the graph connect
equation nodes to variable nodes, and indicate that the variable
is present in the equation.  The bipartite graph for the system of
equations in Figure 1 is shown in Figure 4.

The decomposition process involves several steps – direct-
ing the graph, variable determination, plan construction and
component decomposition.  These phases are briefly discussed
here.  More detailed descriptions can be found in Buckley,
Fertig and Smith (1992) and Smith (1995).

Directing the Graph. The first step in decomposition is
to assign directions to many of the edges in the graph.
Directing the graph amounts to finding a consistent way of
using all of the equations, so that no two equations would be
used to compute the same variable.  Directing is done according
to the following rules:

1) If a variable is independent, all edges are directed away
from the variable.

2) For each equation, there is exactly one edge directed
away from the equation.

3) If there is an edge directed into a variable, all other
edges are directed away from that variable.

Rule 1 corresponds to the fact that an independent variable
will always be used as input in all equations where it appears.
Rule 2 corresponds to the fact that an equation can only be used
to compute one variable at a time.  Rule 3 corresponds to the
fact that once a variable is computed, it is used as input in all
other equations where it appears.

Figure 5 shows one of four possibilities for directing the
graph from Figure 4.  In the current example, all the edges are
directed by the above rules.  However, this would not be the
case if the graph is under-constrained, which arises when there
are more variables than equations.

Directing is accomplished using a variant of the Ford-
Fulkerson algorithm for finding maximal matchings on bipartite
graphs (Cormen, Leiserson and Rivest, 1991).  This algorithm
uses a two phase approach.  First, it finds an initial (not
necessarily maximal) pairing of equation and variable nodes.
Then, it finds paths in the graph where directions can be
reversed to improve the matching.  In reality, Design Sheet
builds up the bipartite graph and does the directing
incrementally.  When a new equation is added, or a variable is
declared independent, first the graph and then its edge
directions are modified to reflect the new constraints.  As a
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Figure 2. Reordering the system of equations.
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Figure 3. A computation plan.
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Figure 4. Bipartite graph of the 6x6 system.
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Figure 5. The directed bipartite graph.
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result, Design Sheet always has an initial matching at hand, and
only uses the path reversal phase of the matching algorithm.

Variable Determination. Once graph directing is
complete, the second step in the decomposition process is to
decide which variables are determined by the current set of
independent variables.  Much of this can be done with the aid of
simple constraint propagation rules:

1) If a variable is independent, it is determined.
2) If all edges of an equation are directed and all imme-

diate predecessors of the equation are determined, the
successor of the equation is determined.

In the current example, we can use the first rule to conclude
that the independent variable g is determined.  The second rule
is then used to determine that the variables d and then f are
determined.  However, we are stuck when we reach equations 1,
4 and 6, because their predecessors are not all determined.

In the directed graph from Figure 5, there are cycles among
the variables a, c, and e, and the equations 1, 3, and 6.  These
nodes and the directed edges between them, form what is called
a strongly connected component  (Cormen, Leiserson and
Rivest, 1991).  A strongly-connected component (SCC) is a
maximal set of nodes such that there is a directed path from any
node in the set to any other node in the set.  A SCC corresponds
to a set of equations that can be solved simultaneously, if all
variable predecessors to the component are determined.  Given
this definition, the third propagation rule can be stated as:

3) If all edges connected to equation nodes in a component
are directed, and all predecessors (not already in the
component) of the component equation nodes are deter-
mined, the variables in the component are determined.

In the current example, all edges connected to equation
nodes in the component are directed.  The external predecessors
to the equation nodes in the component are the variables d and
f, which are both determined.  We can, therefore, conclude that
the variables a, c, and e are determined. Once this is done, rule
2 can be used again to conclude that the variable b is
determined.  In general, it is necessary to repeatedly apply rules
2 and 3 until no further propagation is possible.

To apply rule 3, we must identify SCCs in the graph.  This
is accomplished using a standard backward search and marking
algorithm (Cormen, Leiserson and Rivest, 1991).  In the worst
case, this algorithm takes time linear in the number of nodes
and edges in the graph.  We can further limit the time spent
searching for SCCs by only examining the fringe nodes where
simple propagation (by rules 2 and 3) gets stuck.  While there
may be other SCCs in the partially directed graph, rule 3 only
applies when all the predecessors of the component are
determined.  This will only happen when simple propagation
bumps up against the component.

Plan Construction. Once Design Sheet has figured out
which variables are determined in the graph it can construct a
plan for computing the value of any or all of the determined
variables.  If I is the set of variables of interest, then we only

care about that subset of the graph consisting of all nodes that
have directed paths to nodes in I.  These are the variables and
equations needed to compute the values for the set I.  In this
process, for each component, we coalesce all equation nodes
into a single composite component equation node, and coalesce
all component variable nodes into a single component variable
node.  This gets rid of all cycles within the graph.  A plan for
computing the values of the variables I now corresponds to any
total ordering of the remaining directed acyclic graph (DAG).

In the current example, if the variable of interest is b, the
resulting DAG is shown in Figure 6.  The only linearization of
this DAG is [g, 5, d, 2, f, {1,3,6}, {a,c,e}, 4, b].  This
corresponds to the plan given earlier in Figure 3.

Component Decomposition. In the example above,
Design Sheet was able to decompose a 6x6 system of equations
and variables down into three 1x1 systems and a 3x3 system.
However, it must still solve the 3x3 system.  We could guess
initial values for the three variables, use the equations to
compute errors and iterate.  However, as we noted earlier, the
robustness of this process deteriorates rapidly as the number of
equations and variables increases.  By judiciously choosing the
iteration variables we can often do much better.  For example,
suppose that we guess an initial value for variable a. Using this
guess in equation 1, we can compute a value for c.  Using these
values for a and c in equation 3, we can compute a value for e.
Finally, we can use equation 6 to compute an error for a.  We
have reduced the problem to one involving only a single
iteration variable with some intermediate propagation.

All variables in a SCC do not work equally well for this
purpose.  For example, if we choose e as an iteration variable,
no immediate propagation is possible and we are forced to
guess at a second variable.  To improve the speed and
robustness of numerical iteration, Design Sheet searches to find
a minimal set of iteration variables for each SCC.  It uses a
heuristically guided branch and bound search together with
smart pruning of the set of candidate iteration variables.
Loosely, the algorithm functions as follows:

1) Select a variable in the SCC that is not yet determined
and treat it as independent.
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Figure 6. Collapsing the component.
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2) Find all simple consequences of this choice (i.e., find
all other variables in the SCC that are now determined
by simple propagation).

3) If any variables in the SCC remain undetermined,
repeat the process.

When a solution is found, the system backtracks and tries
other variable choices in step 1, in an effort to find a smaller
iteration set.  If the best set found so far is of size k, the algo-
rithm will backtrack as soon as the current candidate solution
grows beyond size k-1.  The algorithm has another important
improvement.  Suppose a variable v is chosen in step 1 and
another variable v’ is determined from it (and other variables
already in the iteration set).  Since v allows the determination of
v’, v is at least as good a choice as v’.  As a consequence, v’ is
not considered as a candidate for step 1.  A more detailed
description of this algorithm can be found in Smith (1995).

In general, the problem of finding a minimum size iteration
set is NP-complete (Smith, 1995).  This means that the above
search may take time that is exponential in the minimum
number of iteration variables required.  Typically, this has not
been a problem for Design Sheet, even in practical applications
with SCCs involving as many as 150 equations.  These SCCs
are loosely coupled and can usually be solved using only 2 or 3
iteration variables.  In such cases, the search algorithm finds a
minimum size iteration set within a few seconds.

Difficult and Forced Directions. With non-linear
systems, it is sometimes much easier to use an equation in one
direction than another.  Other times, an equation cannot be
solved in a particular direction.  Figure 7 shows two such
equations and the corresponding parts of the constraint graphs.
Consider the first equation in Figure 7.  Given y and z, it is easy
to use this equation to compute x.  Similarly, given x and z it is
easy to use this equation to compute y.  In contrast, computing z
from x and y requires numerical iteration.  Design Sheet
accounts for this by penalizing the assignment of certain edge
directions.  Another special situation arises in the case of the
second equation in Figure 7.  It is not possible to solve this
equation for x.  Design Sheet accounts for this by specifying
that certain edge directions are required or forced.  The graph
representation for this case is also shown in Figure 7.

Direction penalties and forced directions add another level
of complexity to all of the graph algorithms discussed above.
For example, if direction penalties exist within a SCC, the

component decomposition algorithm must consider how the
cost would differ if simple propagation were done in a different
order, resulting in different error equations.  A more detailed
description of these nuances can be found in Smith (1995).

Capabilities of Design Sheet
Important activities during conceptual design include

“what-if analysis” to determine the consequences of individual
design changes on system performance and “tradeoff studies” to
explore the tradeoffs between competing objectives over large
areas of design space.  Design Sheet provides a spreadsheet like
interface for what-if analysis, and a menu-driven graphical
interface for performing design tradeoff studies.

What-if Analysis. The spreadsheet interface allows the
designer to type in new values for different independent or input
variables.  Design Sheet propagates these values across the
constraint network to update the values of the affected
dependent or output variables.  This allows the designer to
study the implications of alternative designs, before deciding on
final design choices.  In contrast to a typical spreadsheet,
Design Sheet allows the user to change which variables are
input (or independent) variables. When the user changes the
choice of inputs at run time, Design Sheet automatically inverts
the model and produces the computational procedures needed
to solve the resulting equations.  Of course, Design Sheet can
only invert where it is mathematically feasible to do so.

Design Sheet can also use external programs (Lisp or
FORTRAN) to define relationships between parameters, and
integrate them with other parts of the model made up of purely
mathematical equations.  It can also reverse the flow through
such programs transparently.  Of course, because it does not
have information about the internals of an external program, it
can only use it as a black box.  Inverting flow through such
programs will therefore be an iterative process.

Tradeoff Studies. The main purpose of Design Sheet is
to perform tradeoff studies, which involve determining the
effect of different values of independent variables on the values
of dependent variables.  In Design Sheet, the user defines new
tradeoff studies simply by specifying the independent and
dependent parameters of interest and the ranges in which to
vary the independent variables.  Design Sheet provides two
interfaces for displaying results of tradeoff studies, namely trade
tables and plots.  Trade tables are mini spreadsheets, which
allow specialized trades to be done separate from the main
model; Design Sheet automatically creates such a spreadsheet
by copying only the relevant part of the model, based on user-
specified variables of interest.

Design Sheet also provides a flexible interface for plotting
the results of tradeoff studies using either two-dimensional or
cross plots.  Two-dimensional plots are used to plot the effect of
an independent variable on a dependent variable, at possibly
discrete values of other independent parameters.  Cross plots

Sin(x) + y = z*Ln(z)
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z = If(x>y, y, y^2)
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Figure 7. Difficult and forced directions.
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are used to plot two dependent parameters, as several
independent parameters are varied over specified ranges.  The
latter are especially powerful for studying performance-cost and
other multiple-objective tradeoffs, and for quickly exploring
large areas of design space.

Error Propagation. During conceptual phases of design,
the designer is often forced to make estimates for the values of
certain independent parameters, because accurate information is
not available early in the design process.  However, the designer
would still like to know how errors in these estimates affect the
various tradeoffs.  This capability is especially useful when
integrated product and process models are used in design.
Manufacturing parameters such as yields are better represented
as statistical distributions, and any design decisions should
consider the effects of these distributions on down-stream
performance attributes.  Though Design Sheet does not provide
facilities for modeling statistical distributions, it allows the
designer to specify standard deviations for the independent
variables.  Design Sheet uses the same constraint network that it
uses to solve the system of equations for propagating the effects
of errors in independent variable estimates.  It assumes that the
errors in the different independent parameters are uncorrelated
and performs a first order error analysis.

Constrained Optimization. Optimization is an impor-
tant part of design process.  The designer may wish to maximize
the performance subject to cost constraints or minimize the cost
to meet certain performance targets.  Design Sheet has a limited
capability for constrained optimization.  It allows any depend-
ent variable to be either minimized (or maximized), subject to
user-defined inequality constraints. The basic algorithm
determines if a given constraint is active, and if so adds it as an
equality constraint, before solving the minimization problem.  It
uses a modified gradient-search algorithm for minimization.
Design Sheet also provides the capability to produce contour
plots for an objective parameter with respect to independent
parameters, with superimposed inequality constraints.

DEMONSTRATION OF DESIGN SHEET
Design Sheet has been successfully used on practical

system analysis problems, for example, to study integrated
performance and cost tradeoffs of aircraft and spacecraft
concepts.  These analyses involved more than a thousand non-
linear equations form several disciplines.  An order of magni-
tude increase in the number of tradeoff studies has been
realized.  More importantly, Design Sheet has enabled new
ways of visualizing and exploring the design space, because it
allows parameters (e.g., cost) that are normally thought of as
outputs of a model to be treated as inputs that can be freely
varied.  The results from these applications have not been
published owing to the competition-sensitive nature of this
information.  Design Sheet is further being used to develop an
“Infrared Seeker Performance Model” under the DARPA

MADE program to facilitate tradeoff studies during the
conceptual design of thermal imaging systems.  This section
demonstrates the capabilities of Design Sheet, especially the
ease with which new criteria can be added to the model and
novel tradeoff studies obtained without any reprogramming.

Designers at Rockwell Autonetics and Missile Systems
Division currently use FLIR92 (NVESD, 1993), a computer
model developed by the U.S. Army Night Vision and Electronic
Sensors Directorate, for system level design analysis of thermal
imaging systems for missile seekers.  This model is quite
accurate and has proved very useful in the early-stage analysis
of alternative seeker designs.  However, the lack of integrated
trade-study capability limits the number of alternatives that are
evaluated, and does not lend the FLIR92 model for easily
searching large areas of design space before making crucial
design decisions.  A further limitation of this model is its
inflexibility in dealing with design criteria not already
programmed into the model.

The Design Sheet based seeker model seeks to integrate
criteria from optical, mechanical and operational aspects of
seeker design into a single model, so that performance trades
from multiple perspectives can be effectively used during
seeker design.  As a first step in developing the overall model,
the core module for predicting the thermal imaging system
performance, based on the FLIR92 model, has been developed
in Design Sheet.  The model includes both scenario specific
(atmospheric, terrain, target, etc.) and design specific (optics,
electronics, sensor, software, display, etc.) information.

Thermal Imaging Systems Model – FLIR92
The FLIR92 thermal imaging systems performance model

uses basic system-level design and operational parameters to
predict whether a system meets performance requirements
necessary to meet a target acquisition and discrimination task.
The model calculates widely accepted system performance
measures, namely the modulation transfer function (MTF), the
minimum resolvable temperature difference (MRTD), and the
minimum detectable temperature difference (MDTD), for both
scanning and staring thermal imaging systems.

Illustrated in Figure 8 are the major system components
used in the model.  Radiation from the target and the back-
ground scene is captured by the seeker optics.  The  photons are
passed through the lens and focused onto a sensor which con-
verts the energy into an electric signal.   The system electronics
process the signal from the detector into a format which is suit-
able for re-display to a human observer.  The observer then
makes a decision as to whether the viewed target is discernible
based on the displayed information.

Targe t Optics FPA Electronics Proce ssing Display Obse rver

Figure 8. Thermal imager block diagram.
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The model consists of equations which reflect how the
signal is modulated from the target to the observer.  The model
calculates the total system transfer function using the linear
filter theory, by calculating MTFs for individual system
components and then multiplying them together.  The model
calculates MTFs due to system components such as optics and
electronics, sensor design characteristics such as scene phasing,
and operational environment effects such as sensor motion.  The
observer is also modeled as a system component for the purpose
of calculating the MTF.  The component MTFs are divided into
pre-filters and post-filters, depending on whether they occur
before or after sampling, and the product of pre-filter and post-
filter MTFs yield the total system MTF.  Noise filters are used
to model component MTFs after noise injection.  An example
MTF for the diffraction-limited optics (Hodl) is given below in
terms of the spatial frequency (fs), diffraction wavelength (λ)
and optics aperture diameter (Do).

Hodl fs( )=
2

π
Cos −1 λfs

Do

 
 
  

 
 −

λfs
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 
 
  

 
 1 −

λfs
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 
 
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 

2 

 
 

 

 
 

1
2 

 
  

 

 
 

MRTD and MDTD are used as system performance meas-
ures.  The MRTD is the minimum temperature difference
between a standard bar target (four 7:1 aspect ratio bars) and
the background that is required in order for a standard observer
to just fully resolve the target.  MRTD is defined for the
horizontal and vertical directions, depending on the target
pattern orientation.  MRTD depends on the system transfer
function (resolution) and the system sensitivity.  The MDTD is
the minimum temperature difference between a square target
and the background required to make the target detectable to a
standard observer.  MRTD is the best overall indicator of
thermal imager performance.  MDTD is a less stringent
performance measure, but is useful in specialized applications
where point source detection is required, such as targets against
uniform backgrounds.

The model also has equations for the effects of various
noise parameters on system performance (MRTD and MDTD).
The noise analysis methodology uses the concept of directional
averaging to isolate system noise into eight components, corre-
sponding to both spatial and temporal aspects of pixel, row,
column and frame effects.  The total noise is given by the root
sum square of the components.  The random spatio-temporal
noise component is modeled as a function of the detector detec-
tivity and the temperature.  The other components are generally
represented by scaling factors which multiply the random
spatio-temporal noise, but can be independently input to the
model.  A detailed description of the model can be found in
NVESD (1993).

Basic Characteristics of the Design Sheet Thermal
Imaging Systems Model

A Design Sheet model to duplicate the functionality of the
FLIR92 model has been completed, and will serve as the core
module of the overall seeker performance model.  Currently, the
Design Sheet model has 17 component MTFs and eight noise

components, represented by 124 scalar variables, 72 constraints
and 69 transforms.  They model both the staring and scanning
type of infrared imagers operating in the mid-wave to long-
wave infrared spectral bands.  In addition to the equations for
MRTD and MDTD, the model has equations for predicting the
probability of detection of a target based on system MRTD,
target size and target range.  It is this ability of Design Sheet to
easily integrate additional model fragments that contribute to
the flexibility of the resulting seeker design system.

The constraint network depicting the dependencies between
the equations and variables in the model is shown in Figure 9.
As the total constraint network is too large to be displayed here,
Figure 9 only shows the part of the network that is relevant to
the tradeoff studies described in this paper.  The variables of
importance are the design parameters, focal length and f/#; the
performance parameters, field of view (FOV), probability of
detection (POD) and minimum resolvable temperature
difference (MRTD); and the operational characteristics, target
range and spatial frequency (fspat).  Focal length is the effective
focal length and f/# is the ratio of the focal length to the
aperture diameter of the overall optical system.

The arrows in Figure 9 denote the default direction of data
flow in the constraint network.  In this mode, given the design
and operational parameters, the model calculates the perform-
ance metrics, and is the mode in which the original FLIR92
model is used.  Test cases have been run in this mode to verify
that the results produced by the Design Sheet model are
accurate with reference to the original FLIR92 model.  In order
to calculate the performance metrics, the user interacts with the
model through the top-level graphical user interface shown
in Figure 10.  There are four panes, the right hand side is the
variable pane, and the left hand side is divided into the
command pane, the display pane and the relation pane,
respectively from top to bottom.  The variable pane serves as a

f#

Focal Len.

Fspat
Range

POD

MRTD

FOV

Figure 9. A partial constraint network for the seeker
model.
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spreadsheet, and when values are changed for independent
variables, they are propagated across the constraint network and
new values calculated for the performance attributes.  The menu
bar of the interface can be used to access various commands,
the most interesting of which are the commands for defining
tradeoff studies and displaying the results.

In addition to calculating the MRTD for a specific seeker
design,  the seeker performance model can also be used in the
default forward mode to calculate the various modulation trans-
fer functions.  Figure 11 shows the plots of the total system
MTF and some of the component MTFs as a function of spatial
frequency.  Such a tradeoff is useful in identifying critical
components for further analysis.  Producing this graph requires
only minimal effort, as the plotting capability is integral within
Design Sheet.  All that is required of the user is to type in the x-
axis and y-axis variable names, and the ranges for the x-axis
variable.  The integrated tradeoff capabilities have proved to be
very important in promoting user acceptance of Design Sheet.

Using the Design Sheet Model for Tradeoff Studies
The ability to study the performance characteristics of a

specific seeker design is an important capability in itself.
However, the uniqueness of Design Sheet is in being able to use
this model for performing tradeoff studies over large tracts of
design space, before selecting a specific design.  Especially
interesting and extremely useful are the tradeoffs that involve
fixing some of the performance requirements, such as the
tradeoff between target range and field of view for a specified
probability of detection.  Some interesting tradeoff studies are
reported in this section.  Though the model itself has equations
for both scanning and staring systems, the tradeoff studies
shown here are only for the scanning system.

An important characteristic that is often considered by
seeker designers is the tradeoff between MRTD and spatial
frequency.  A good seeker design should not only have smaller
values of MRTD, but the variation of MRTD with spatial
frequency should be small for spatial frequencies of interest.   In
order to study the effect of different optical system designs on
the tradeoff between MRTD and spatial frequency, the designer
can generate a plot of this characteristic for different values of
optical system parameters.  Such a tradeoff between horizontal
MRTD and spatial frequency, for a focal length of 250 mm and
varying values of f/#, can be generated quickly and easily in
Design Sheet, and is shown in Figure 12. This tradeoff plot is
obtained in a matter of seconds.

The MRTD is generally viewed as an output, while spatial
frequency is the input, of the seeker performance model.  In
Design Sheet,  however, the state of these two variables can be
switched.  This can be done easily and only requires a couple of
mouse clicks; first the variable, fspat, is made undetermined and
then the variable, MRTD, is made independent.  The new state
of the directed constraint graph is shown in Figure 13.  In
Figure 13, the independent parameters of interest, namely, f/#,
focal length, range and MRTD, are circumscribed by blue
rectangles, whereas the parameters calculated by the constraint
network, namely, fspat, FOV and POD, are circumscribed by
red rectangles.  The new computational plan is automatically

Figure 10. Design Sheet top-level user interface.
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M FPA integration
M geometric blur

M random image motion

M display sample&hold

M diffraction

M crt

M
 detector spatial

M
 total system

Figure 11. System MTF and some component MTFs.
Figure 12. The effect of optics design on the tradeoff

between MRTD and spatial frequency.
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determined by Design Sheet.  The path of computation for
probability of detection for a specified MRTD is shown by the
highlighted (in red color) arrows.  This plan requires a system
of equations involving MRTD and spatial frequency to be
simultaneously solved.

The model in this state can be used to specify a fixed value
of MRTD, and a tradeoff between probability of detection
(POD) and target range obtained. Such a tradeoff is very useful
in the design of thermal imaging systems, because a minimum
value of MRTD is often specified as a requirement.  Figure 14
is a plot of this tradeoff, for MRTD of 0.1 and an effective focal
length of 250 mm, for two different values of f/#.  This tradeoff
is especially useful during the conceptual stages, because the
designer is able to tradeoff two performance attributes, namely
POD and target range, for a strict requirement on MRTD.
Figure 14 further shows how the optical system parameters can
be adjusted to change the nature of this tradeoff.

If the critical requirement were probability of detection,
instead of the MRTD, the flexibility of Design Sheet allows the
designer to obtain a new tradeoff that is appropriate for this
situation.  The MRTD is now relaxed, and the probability of
detection made as an input instead.  Now, a tradeoff plot can be
obtained between the MRTD and target range for a specified
requirement on probability of detection.  Such a plot for two
different probabilities of detection is shown in Figure 15.

Finally, let us consider an even more interesting tradeoff
study.  The designer is often provided with requirements on the
minimum temperature differences that need to be resolved
(MRTD) as well as the probability of detection (POD) that is
desired.  Under these circumstances, there is a tradeoff between
the target range and field of view given a specific MRTD and
POD.  Knowing this tradeoff would enable the conceptual
designer to provide a more appropriate specification on the
target range in the requirements specification stage.

Making both the MRTD and the POD independent
variables requires both spatial frequency and target range to be
relaxed as inputs.  Figure 16 shows the directed constraint graph
for this state of the model.  The data flow in the model from
focal length, f/#, MRTD and POD to  field of view (FOV) and
target range is in a direction that is reverse of the data flow in
the traditional use of the model.  It is this ability to reverse the
flow directions that makes Design Sheet a powerful tool for
performing tradeoff studies in support of conceptual design.

Figure 17 shows the tradeoff plot between field of view (in
the vertical direction) and target range for specified values of
0.1 for the MRTD (in the vertical direction) and 0.7 for the
probability of detection.  This plot is called a cross plot and
plots two dependent variables on the x and y axes.  The
independent variables that are varied are the focal length and
f/#, and the different values of these variables are shown on the
plot.  Based on the trade-off shown in Figure 17, and other
relevant information about the operational regimes for field of
view (FOV) and target range, the designer can choose
appropriate values for focal length and f/#.

f#

Focal Len.

Fspat
Range

POD

MRTD

FOV

Figure 13. Constraint graph with MRTD as input.

Figure 14. Tradeoff between target range and
probability of detection for a specific value of MRTD.

Figure 15. Tradeoff between MRTD and target range
for  a specified probability of detection.
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The tradeoff studies shown in this section are only
examples and are by no means the only ones used by designers
in developing infrared seekers.  Design Sheet does not pre-
define the tradeoffs that are needed by designers, but makes the
generation of new tradeoffs quite easy.

CONCLUSIONS
The integration of constraint management techniques with a

flexible environment for tradeoff studies has resulted in a
powerful tool for conceptual design.  By allowing models to be
represented in the form of mathematical equations, separate
from any control code,  Design Sheet permits models to be
developed incrementally and integrated with other models
easily. Design Sheet automatically derives control code
necessary for performing tradeoff studies based on simple user

specifications, thus allowing the designer to define new tradeoff
studies easily.  This along with the ability to determine which
variables are input at run time make Design Sheet a flexible tool
for conceptual design and requirements analysis.

The success of Design Sheet on practical applications is a
result of the graph theoretic algorithms used for constraint
management, which scale gracefully to extremely large sets of
equations.  Like other constraint-based systems, Design Sheet
decomposes the system of equations into subsets that need to be
solved simultaneously.  However, in contrast to other systems,
Design Sheet further decomposes these simultaneous subsets
before applying numerical solution techniques.  This is crucial
because the robustness of numerical approaches for solving
systems of non-linear equations deteriorates rapidly with the
number of equations.  The thermal imaging systems design
example clearly demonstrates not only that complex models can
be implemented using Design Sheet but also the ease with
which tradeoff studies can be performed.  Tradeoff studies
shown here have been obtained in a matter of seconds to
minutes, whereas they could have taken hours if not days to
produce using traditional means.

Design Sheet has proved very useful on practical concep-
tual design analysis problems, where the model can be repre-
sented as a network of constraints between design and perform-
ance attributes.  Often, during conceptual design, however,
design alternatives cannot all be modeled using a single
constraint network. Design Sheet does not offer automatic
support for comparing design alternatives requiring different
constraint networks.  Another current limitation of Design Sheet
is the inadequate support provided for including differential
equations as part of the constraint network.  A future direction
for this research is to investigate adding more principled
support for solving ordinary differential equations.  An
approach we are considering will extend the constraint
management algorithms to handle function-valued attributes.

ACKNOWLEDGMENTS
This research has been funded in part by DARPA MADE

program administered through the United States Air Force
Manufacturing Technology Directorate under contract F33615-
94-C-4426.  We wish to thank Anne Hemingway of Rockwell
Autonetics and Missile Systems Division for help with the
modeling of the infrared seeker systems and the interpretation
of the tradeoffs.

REFERENCES
Bouchard, E. E., Kidwall, G. H., and Rogan, J. E., 1988,

“The Application of Artificial Intelligence Technology to
Aeronautical System Design,” AIAA 88-4426, AIAA Aircraft
Design Systems and Operations Meeting, Atlanta, Georgia.

Buckley, M. J., Fertig, K. W., and Smith, D. E., 1992,
“Design Sheet: An Environment for Facilitating Flexible Trade
Studies During Conceptual Design,” AIAA 92-1191, Aerospace
Design Conference, Irvine, California.

f#

Focal Len.

Fspat
Range

POD

MRTD

FOV

Figure 16. Constraint graph with both MRTD and POD
being independent.

   
 F

O
V

 (
m

r)
   

 

FocalLength=100

FocalLength=200

FocalLength=300
f#=2

f#=4

f#=3

Figure 17. Tradeoff between field of view and target
range.



11 Copyright © 1996 by ASME

Choy, J. K., and Agogino, A. M., 1992, “SYMON: Auto-
mated Symbolic Monotonicity Analysis System for Qualitative
Design Optimization,” Proceedings of the ASME International
Computers in Engineering Conference, Chicago, Illinois, pp.
305-310.

Cormen, T., Leiserson, C., and Rivest, R., 1991,
Introduction to Algorithms., McGraw-Hill Book Company,
New York.

Cutkosky, M., R., 1993, “PACT: An Experiment in Inte-
grating Concurrent Engineering Systems,” IEEE Computer, Vol.
26, pp. 28-37.

Dixon, J. R., Orelup, M. F., and Welch, R. V., 1993, “A
Research Progress Report: Robust Parametric Designs And
Conceptual Design Models,” Proceedings of the 1993 NSF
Design and Manufacturing Systems Conference, SME,
Dearborn, Michigan, pp. 499-506.

Herman, A. E., and Lu, S. C-Y., 1992, “Computer Methods
for Distributed Reasoning to Support Concurrent Engineering,”
Proceedings of the Prolamat ‘92 Conference, Tokyo, Japan, pp.
1-19.

Krishnan, V., Navinchandra, D., Rane, P., and Rinderle, J.
R., 1990, “Constraint Reasoning and Planning in Concurrent
Design,” Technical Report CMU-RI-TR-90-03, The Robotics
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

McGuire , J. G., Kuokka, D. R., Weber, J. C., Tenenbaum,
J. M., Gruber, T. R., and Olsen, G. R., 1993, “SHADE:
Technology for Knowledge-Based Collaborative Engineering,”
Concurrent Engineering Research and Applications, Vol. 1,
pp. 1-17.

NVESD, 1993, “FLIR92 Thermal Imaging Systems
Performance Model,” Document 5008993, U.S. Army Night
Vision and Electronic Sensors Directorate, Ft. Belvoir, Virginia.

Ramaswamy, R., and Ulrich, K., 1993, “A Designer’s
Spreadsheet,” Proceedings of the Design Theory and Method-
ology Conference, DE-Vol. 53, ASME, New York, pp. 105-113.

Serrano, D., 1987, “Constraint Management in Conceptual
Design,” Ph.D. Dissertation, MIT, Department of Mechanical
Engineering, Cambridge, Massachusetts.

Smith, D., 1995, “Equation Decomposition in Design
Sheet,” Technical Report, Rockwell Science Center, Palo Alto
Laboratory, Palo Alto, California (in preparation).

Sriram, D., and Logcher, R., 1993, “The MIT DICE
Project,” Computer, Vol. 26, pp. 64-65.

Ward, A. C., 1989, “A Theory of Quantitative Inference for
Artificial Sets Applied to A Mechanical Design Compiler,”
Ph.D. Dissertation, MIT, Department of Mechanical Engineer-
ing, Cambridge, Massachusetts.


